Evolutes and Isoperimetric Deficit in Two-dimensional Spaces of Constant Curvature
نویسندگان
چکیده
We relate the total curvature and the isoperimetric deficit of a curve γ in a two-dimensional space of constant curvature with the area enclosed by the evolute of γ. We provide also a Gauss-Bonnet theorem for a special class of evolutes.
منابع مشابه
On 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type
In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five. Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces. Moreover, we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...
متن کاملSymmetrization Procedures for the Isoperimetric Problem in Symmetric Spaces of Noncompact Type
We establish a new symmetrization procedure for the isoperimetric problem in symmetric spaces of noncompact type. This symmetrization generalizes the well known Steiner symmetrization in euclidean space. In contrast to the classical construction the symmetrized domain is obtained by solving a nonlinear elliptic equation of mean curvature type. We conclude the paper discussing possible applicati...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملMinkowski isoperimetric-hodograph curves
General offset curves are treated in the context of Minkowski geometry, the geometry of the two-dimensional plane, stemming from the consideration of a strictly convex, centrally symmetric given curve as its unit circle. Minkowski geometry permits us to move beyond classical confines and provides us with a framework in which to generalize the notion of Pythagorean-hodograph curves in the case o...
متن کاملOn the Isoperimetric Constant of Symmetric Spaces of Noncompact Type
From this result one can easily deduce I (H) = n 1. For a detailed discussion of Cheegers constant and related results, one can consult [Cha, Chapter 6]. In general, it is very di¢ cult to know if the isoperimetric constant is positive or not and it is almost impossible to compute it explicitly if it is known to be positive. In this short note, we prove that the isoperimetric constant is posit...
متن کامل